## Compare Multiple Related Samples

The command compares multiple related samples using the Friedman test (nonparametric alternative to the one-way ANOVA with repeated measures) and calculates the Kendall's coefficient of concordance (also known as Kendall's W). Kendall's W makes no assumptions about the underlying probability distribution and allows to handle any number of outcomes, unlike the standard Pearson correlation coefficient. Friedman test is similar to the Kruskal-Wallis one-way analysis of variance with the difference that Friedman test is an alternative to the repeated measures ANOVA with balanced design.

## **How To**

- ✓ For unstacked data (each column is a sample):
  - Run the Statistics->Nonparametric Statistics -> Compare Multiple Related Samples [FRIEDMAN ANOVA, CONCORDANCE] command.
  - Select variables to compare.
- ✓ For stacked data (with a group variable):
  - Run the Statistics->Nonparametric Statistics -> Compare Multiple Related Samples (*with Group Variable*) command.
  - Select a variable with observations (VARIABLE) and a text or numeric variable with the group names (GROUPS).

## **RESULTS**

The report includes Friedman ANOVA and Kendall's W test results.

| Compare Multiple Related Samples |              |                    |         |
|----------------------------------|--------------|--------------------|---------|
| ANOVA                            |              |                    |         |
| N                                | 7            | Degrees of Freedom | 3       |
| Corrected for                    | ties         |                    |         |
| Chi-square                       | 11.55882     | p-level            | 0.00906 |
| Not corrected                    | for ties     |                    |         |
| Chi-square                       | 11.22857     | p-level            | 0.01055 |
|                                  |              |                    |         |
| Kendall's W                      |              |                    |         |
| Average rank                     | 0.47549      |                    |         |
| Kendall's W                      | 0.55042      |                    |         |
|                                  |              |                    |         |
| Statistics                       |              |                    |         |
| VAR                              | Average rank | Sum of Ranks       | Mean    |
| Employee                         | 1.42857      | 10                 | 4       |
| March                            | 3.71429      | 26                 | 12      |
| April                            | 2.28571      | 16                 | 7.42857 |
| May                              | 2.57143      | 18                 | 7.14286 |

**THE FRIEDMAN ANOVA** tests the null hypothesis that the samples are from identical populations. If the p-value is less than the selected  $\alpha$  level the null-hypothesis is rejected.

If there are no ties, Friedman test statistic F<sub>t</sub> is defined as:

$$F_t = \left[ \frac{12}{nk(k+1)} \sum_{i=1}^k R_i^2 \right] - 3n(k+1)$$

where n is the number of rows, or subjects; k is the number of columns or conditions, and  $R_i$  is the sum of the ranks of  $i^{th}$  column.

If ranking results in any ties, the Friedman test statistic F<sub>t</sub> is defined as:

$$F_{t} = \frac{n(k-1)\left[\sum_{i=1}^{k} \frac{R_{i}^{2}}{n} - C_{F}\right]}{\sum_{i} r_{i}^{2} - C_{F}}$$

where n is the number rows, or subjects, k is the number of columns, and  $R_i$  is the sum of the ranks from column, or condition l;  $C_F$  is the ties correction (Corder et al., 2009). When n > 15 or k > 4 the test statistic approximately follows chi-square distribution with  $d \cdot f = k - 1$ .

**Kendall's W** is used to assess the agreement between samples, it is a normalization of the Friedman test statistic and ranges from 0 (no agreement) to 1 (complete agreement).

Kendall's W is defined by:

$$W = \frac{12 \, R}{m^2 (k^3 - k)}$$

where m is a number of raters, rating k subjects in a rank order from 1 to k. R is a squared deviation.

## References

Conover, W. J. (1999), Practical Nonparametric Statistics, Third Edition, New York: John Wiley & Sons. Corder, Gregory W., Foreman, Dale I. (2009). Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach.

Friedman, Milton (March 1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics 11 (1): 86–92.