
 

Polynomial Regression 

POLYNOMIAL REGRESSION command fits a polynomial relationship between variables. The regression 

is estimated using ordinary least squares for a response variable and powers of a single predictor. 

Polynomial regression (also known as curvilinear regression) can be used as the simplest nonlinear approach 

to fit a non-linear relationship between variables. Polynomial models are useful when it is known that 

curvilinear effects are present in the true response function or as approximating functions (Taylor series 

expansion) to an unknown nonlinear relationship.  

How To 
 Run: STATISTICS->REGRESSION -> POLYNOMIAL REGRESSION... 

 Select DEPENDENT (RESPONSE) variable and INDEPENDENT variable (PREDICTOR). 

 Enter the DEGREE OF POLYNOMIAL to fit (referred as k below).   

o When the degree of a polynomial is equal to 1, the model is identical to the linear 

regression. 

o For lower degrees of k, the regression has a specific name: k = 2 – quadratic regression, 

k = 3 – cubic regression, k = 4 – quartic regression, k = 5 – quintic regression. 

o It is recommended to keep the degree of a polynomial as low as possible and avoid using 

high-order polynomials unless they can be justified for reasons outside the data 

(Montgomery, et al., 2013). High degrees may also risk a numerical overflow when values of 

the predictor variable are large. 

o As a general rule, k < 5 (Draper, Smith, 1998). 

 Optionally, following charts can be included in the report:  

o Residuals versus predicted values plot (use the PLOT RESIDUALS VS. FITTED option); 

o Residuals versus order of observation plot (use the PLOT RESIDUALS VS. ORDER option); 

o Predicted values versus the observed values plot (LINE FIT PLOT). 

Results 
Report includes the regression statistics, analysis of variance (ANOVA) and tables with coefficients 

and residuals. 

Regression Statistics 

R2 (Coefficient of determination, R-squared) - is the square of the sample correlation coefficient 

between the Predictor (independent variable) and Response (dependent variable).  

Adjusted R2 (Adjusted R-squared) is a modification of R2 that adjusts for the number of explanatory 

terms in a model.  

See the LINEAR REGRESSION chapter for more details. 



 

ANOVA Table 

SOURCE OF VARIATION - the source of variation (term in the model). The TOTAL variance is partitioned 

into the variance, which can be explained by the independent variables (REGRESSION), and the variance, 

which is not explained by the independent variables (ERROR, sometimes called RESIDUAL). 

SS (SUM OF SQUARES) - the sum of squares for the term. 

The line in the ANOVA table for the total gives the residual sum of squares corresponding to the 

mean function with the fewest parameters. 

DF (DEGREES OF FREEDOM) - the number of observations for the corresponding model term. The 

TOTAL variance has N –  1 degrees of freedom.  The REGRESSION degrees of freedom correspond to the 

number of coefficients estimated, including the intercept, minus 1.   

MS (MEAN SQUARE) - an estimate of the variation accounted for by this term.  

       𝑀𝑆 = 𝑆𝑆/𝐷𝐹 

F - the F-test value.  

P-LEVEL  - the significance level of the F-test.  A value less than 𝛼 shows that the model estimated by 

the regression procedure is significant. 

Coefficients and Standard Errors Table 

Regression coefficient (Beta), its standard error and confidence limits, the p-level and the risk ratio 

are displayed for each power of the predictor. 

BETA – covariate regression coefficient estimate. 

STANDARD ERROR – the standard error of the regression coefficient (Beta). 

T-TEST – the t-statistics used in testing whether a given coefficient is significantly different from 

zero. 

P-LEVEL - p-values for the null hypothesis that the coefficient is 0. Low p-value (< 0.05) allows the null 

hypothesis to be rejected and means that the covariate significantly improves the fit of the model. 

LCL, UCL [BETA] – are the lower and upper 95% confidence intervals for the Beta, respectively. 

Default α level can be changed in the Preferences. 

H0 (5%) - shows if null-hypothesis can be rejected/accepted at 5% level.  

 

Residuals 

PREDICTED values or fitted values are the values that the model predicts for each case using the 

regression equation. 



 

RESIDUALS are differences between the observed values and the corresponding predicted values. 

Residuals represent the variance that is not explained by the model. The better the fit of the model, the 

smaller the values of residuals. Residuals are computed using the formula  

𝑒𝑖 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑦𝑖 − 𝑦𝑖̂. 

Both the sum and the mean of the residuals are equal to zero. 

Model 
The polynomial regression model for a single predictor, x, is: 𝑌 = 𝑐 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑘𝑥𝑘 + 𝑒, where Y 

is the dependent variable, and a's are the regression coefficients for the corresponding power of the 

predictor 𝑥𝑖, c is the constant or intercept, and e is the error term reflected in the residuals. The regression 

function is linear in terms of the unknown parameters 𝑐, 𝑎1, ⋯ , 𝑎𝑘  because the powers of the predictor  𝑥, 

are treated as distinct independent variables 𝑥𝑖. For this reason, polynomial regression is considered as a 

form of a multiple linear regression, although it is used to fit a nonlinear (polynomial) model to the data. 

Unlike the linear regression model, extrapolation beyond the limits of data is dangerous and may produce 

meaningless results for high degree polynomials due to the problem of oscillation at the edges of data 

interval (known as Runge's phenomenon). 

Example 
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